
Definition of logarithm?
logarithm is the exponent that indicates the power
to which a base number is raised to produce a given number.
Logarithm is invented by John Napier.
to which a base number is raised to produce a given number.
Logarithm is invented by John Napier.
Laws of logarithm
qLoga PQ = Loga P +
Loga Q
q
Loga P/Q
= Loga P – Loga Q
q Loga Pn = nLoga P
q Loga 1 = 0
q Loga a = 1
q Loga y =
Logb y
/ Logb a
Exponent and Base
Common logarithm base
Example: the base 10 logarithm of 100 is 2
Example 2: 2x = 5 (index form)
- How to find x?
- Need to make sure that they are the same base
2x = 5
Example 3:Find x, Log2 (5x
+ 7) = 5
x = log2 5
5x + 7 = 25
25 is actually 2 x 2 x 2 x 2 x 2
5x + 7 = 32
5x = 32 – 7
5x = 25
X = 25/5
Anwser: X = 5
Questions that you can try:
1.Given: log8(5) = b. Express log4(10) in terms of b.
2. Solve for x the equation 4x - 2 = 3x + 4
3. Simplify without calculator: log6(216) + [ log(42) - log(6) ] / log(49)
GOODLUCK!😊😊😊
No comments:
Post a Comment